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Billions of cells die via apoptosis every day and are swiftly removed. When a phagocyte engulfs an
apoptotic cell, it essentially doubles its cellular contents, raising the question of how a phagocyte
maymanage the excessmetabolic load. This Minireview discusses phagocyte cellular metabolism,
the digestion of the ingested apoptotic cell, and the impact of these processes on engulfment.co
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The prompt and specific recognition of dying cells and

their subsequent removal is an integral part of a number of

biological processes, including developmental morphogenesis

in embryonic life and tissue turnover/regeneration in adults.

The turnover rate in humans has been estimated to be�1 million

cells per second each day. The dying cells are recognized and

engulfed by both professional phagocytes (macrophages and

immature dendritic cells) and nonprofessional phagocytes

(such as fibroblasts). Defects in removal of apoptotic cells

have often been linked to development of inflammation and

autoimmune diseases (Nagata et al., 2010).

The first step in the engulfment process is the migration of the

phagocyte in response to soluble find-me signals released by the

apoptotic cells (e.g., nucleotides ATP and UTP, lipid lysophos-

phatidylcholine [LPC], fraktalkine/CX3CL1, and sphingosine 1

phosphate [S1P]) (Gregory and Pound, 2011). Phagocyte engulf-

ment receptors then recognize specific ‘‘eat-me signals’’

exposed on the surface of apoptotic cells (Nagata et al., 2010).

The most extensively characterized eat-me signal is the lipid

phosphatidylserine (PtdSer), which can be recognized either

directly (via receptors such as brain angiogenesis inhibitor 1,

T cell immunoglobulin domain and mucin domain 4, and Stabi-

lin-2) or indirectly via bridging molecules (such as MFG-E8,

Gas6, or protein S) (Nagata et al., 2010). Phagocytic receptor

engagement activates signaling pathways that result in the acti-

vation of Rac1, a Rho family GTPase, leading to the physical

internalization of the dying cell by the phagocyte. The fourth

step, and the focus of this Minireview, is the process of digesting

the contents of the ingested corpse. When one cell engulfs

another, it is akin to a neighbor moving all of his or her belongings

into our house. The phagocyte essentially doubles its content of

lipids, carbohydrates, protein, nucleotides, and other cellular

materials from the apoptotic cell. Hence, an interesting but

largely unanswered question is how the phagocyte handles the

excess metabolic burden acquired from the ingested corpse.

What are the metabolic changes that occur within the phagocyte

such that it can continue its ‘‘normal’’ functions while processing

the extra metabolites? Also, it appears that there are fewer

phagocytes in a tissue than there are dying cells, in which case

a given phagocyte likely eats multiple targets sequentially. In
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this scenario, how does the ingested cargo regulate the phago-

cytic machinery and continued clearance by phagocytes? Some

of the answers to these questions are beginning to emerge.

Regulation of Phagocyte Lipid Metabolism
Some of the major players involved in cellular lipid homeostasis

are peroxisomes proliferator-activated receptors (PPARs) and

liver x receptor (LXR), members of the nuclear receptor super-

family. PPARs (isoforms a, b/d, and g) and LXR (isoforms a and b)

are ligand-activated transcriptional activators that have varied

tissue expression. PPARs and LXR heterodimerize with retinoid

X receptors (RXRs) following binding to ligands such as fatty

acids and oxysterols and recruit coactivators to induce tran-

scription of a variety of genes involved in lipid and cholesterol

metabolism.

Studies over the past few years suggest specific roles for

PPARs and LXR in the clearance of apoptotic cells. Macro-

phages exposed to apoptotic cells experience a rapid increase

in PPARg activation, as measured by binding to PPAR response

elements. Functionally, macrophages derived from PPARg�/�

mice have been shown to engulf fewer apoptotic cells compared

to wild-type cells (Roszer et al., 2011). Antagonists of PPARg

also impair engulfment, whereas PPARg agonists promote

phagocytosis of apoptotic targets by immature dendritic cells

(Majai et al., 2010). Interestingly, PPARg does not appear to be

required for opsonized bacterial phagocytosis, suggesting spec-

ificity for the signaling induced within phagocytes by apoptotic

cell engagement. In vivo and ex vivo studies have shown similar

impaired phagocytic clearance in LXRab�/�, PPARd�/�, and

RXRa�/� mice (Gonzalez et al., 2009; Mukundan et al., 2009;

Roszer et al., 2011). How does stimulation of PPARs or LXR

regulate engulfment? Existing evidence suggests that LXR and

PPAR activation during apoptotic cell clearance leads to the

upregulation of phagocytic receptors (e.g., Mer) and opsonins

(Gas6, MFG-E8, and C1qb) by the phagocyte (Gonzalez et al.,

2009; Mukundan et al., 2009) (Figure 1).

PPAR and LXR family members also play important roles in

mediating lipid homeostasis. One mechanism by which phago-

cytes may regulate their lipid content is through enhancement

of their basal cholesterol efflux during engulfment. The enhanced
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Figure 1. Metabolic Factors and Signaling Pathways within the

Phagocyte Involved in Apoptotic Cell Clearance
Engulfment of apoptotic cells activates several pathways that may affect
phagocytemetabolism and promote continued corpse uptake. First, apoptotic
cell engulfment leads to phagocyte PPAR and LXR activation, with their
ligands possibly derived from ingested cargo. PPARs and LXR subsequently
increase transcription of phagocytic receptors (e.g., Mer and CD36) and
opsonins (e.g., C1qb and MFG-E8). In a second pathway, tickling of engulf-
ment receptors by phosphatidylserine exposed on the apoptotic cell leads to
increased Abca1 expression and cholesterol efflux via PPAR and LXR activity.
Lastly, phagocytes increase Ucp2 expression in the mitochondria following
engulfment of apoptotic cells, leading to decreased mitochondrial membrane
potential; the decrease in mitochondrial membrane potential, in turn, helps to
promote continued apoptotic cell uptake. Phagocytic receptor Tim-4 may
participate in crosstalk with the mitochondrial uncoupling proteins. Phag-
osome-containing apoptotic cells may also be decorated with LC-3, a marker
of macroautophagy that has been shown to facilitate phagosome maturation
and degradation.
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cholesterol efflux induced by apoptotic cells was dependent on

the exposed phosphatidylserine on apoptotic cells binding to

engulfment receptors on phagocytes and involved the increased

expression of the lipid transporter ABCA1, which appears to

require LXRab activity (Kiss et al., 2006). Improper cholesterol

efflux has been shown to exacerbate atherosclerosis, and

deficiency of certain engulfment receptors such as Mer has

been linked to a predisposition to atherosclerosis (Tabas,

2010). The dual role of LXRab in cholesterol homeostasis and

apoptotic cell clearance insinuates a possible linkage between
metabolic signaling and continued clearance by the phagocyte,

as well as connections to certain pathogenic sequelae.

Overall, the existing data suggest that the phagocytic process

leads to changes within phagocytes, conferring properties

(ranging from enhanced engulfment to cholesterol homeostasis)

that are mediated at least in part by the PPAR and LXR families

via the sensing of lipids (Gonzalez et al., 2009; Mukundan et al.,

2009). It has long been known that the PPARs and LXR also

dampen inflammation. Intriguingly, one of the hallmarks of

apoptotic cell engulfment (compared to phagocytosis of patho-

gens) is the ‘‘immunologically silent’’ removal of corpses with

active production of anti-inflammatory cytokines. In this context,

it is interesting that mice lacking PPARs and LXR developed

signs of autoimmunity, including autoantibodies to nuclear anti-

gens and glomerulonephritis (Gonzalez et al., 2009; Mukundan

et al., 2009; Roszer et al., 2011), phenotypes often seen in

mice with impaired apoptotic cell removal (Nagata et al., 2010).

Inflammation is also considered a key component of atheroscle-

rosis progression, and apoptotic cells as well as a necrotic core

are part of late-stage atherosclerotic plaques (Tabas, 2010).

Furthermore, loss of PPARs and LXR expression, and the engulf-

ment receptor Mer, worsen atherosclerosis in mouse models.

What is unclear at this point is how the PtdSer at the cell surface

‘‘talks’’ to the PPAR and LXR proteins and how this translates to

alterations on phagocyte lipidmetabolism. Further studies on the

signaling pathways that connect phagocytosis of apoptotic cells

to the regulation of phagocyte lipid metabolism may yield thera-

peutic targets for atherosclerosis and diseases associated with

improper or uncontrolled inflammation.

Links between Glucose Metabolism and Phagocytosis
Surprisingly, few studies have directly examined the role of

glucose metabolism in phagocytosis. Single-nucleotide poly-

morphisms in the gene coding for Elmo1, a key Rac regulator

required for corpse removal in testes (Elliott et al., 2010),

have been associated with increased risk for diabetic nephrop-

athy (Pezzolesi et al., 2009). Though intriguing, whether defects

in apoptotic cell clearance contribute to the development and

pathogenesis of type 2 diabetes remains to be determined.

Nevertheless, when considering that glycolysis is a major cata-

bolic pathway that supplies energy, the possibility arises that

the degradation products of the ingested corpses could modify

phagocyte glucose levels and affect cellular glucose transport

and synthesis. These events, in turn, may have a wider impact

on glucose homeostasis on an organismal level.

Glycolytic metabolism has recently been of particular interest

in the cancer biology field. Tumor cells often switch from oxida-

tive phosphorylation to glycolysis while growing under hypoxic

conditions, a transition known as the Warburg Effect (Cairns

et al., 2011). This alteration in energy metabolism appears to

confer a growth and invasiveness advantage to cancer cells,

likely via enhanced resistance to apoptosis and increased prolif-

eration rates (Cairns et al., 2011). Because many solid tumors

have tumor-associated macrophages (TAMs) (Gregory and

Pound, 2011), TAMs can be exposed to a partial hypoxic envi-

ronment when they clear apoptotic cancer cells. It will be infor-

mative to determine whether phagocytes also switch energy

utilization pathways following phagocytosis of apoptotic cells
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andwhether the switch bestows similar growth benefits upon the

phagocyte. One pathway that may be of interest is the pentose

phosphate pathway, in which the products NADPH and

pentoses are used for amino acid and nucleic acid synthesis,

which may be utilized for cellular growth purposes (i.e.,

anabolic). There could also be an extensive series of changes

within the tumor microenvironment depending on howwell dying

cells are cleared within a tumor, as clearance of apoptotic cells

results in production of anti-inflammatory cytokines that may

dampen antitumor responses. Hence, corpse removal within a

tumor may be a double-edged sword, as the ingested apoptotic

cells may serve as energy sources for TAMs, allowing for

continued corpse uptake yet simultaneously suppressing the

immune system. It is noteworthy that culturing phagocytes in

a different nutrient environment tended to promote phagocytosis

of apoptotic cells, whereas a high-glucose environment reduced

corpse uptake (Park et al., 2011). The ingestion of apoptotic cells

by phagocytes in particular microenvironments, with altered

nutrient availability, could have important implications for tumor

progression and other pathologies.

Mitochondria, Engulfment Capacity, and Autophagy
Lipids and carbohydrates represent the two principal cellular

energy sources. Their catabolism and subsequent derivatives

feed into the tricarboxylic acid (TCA) cycle and/or the electron

transport chain (ETC) of the mitochondria. The ETC consists of

four protein complexes embedded in the mitochondrial inner

membrane. A series of redox reactions occurs in the ETC in

which electrons are passed along to sequential acceptors. The

transport of H+ across the inner membrane creates an electro-

chemical gradient (termed mitochondrial membrane potential

[MMP]), which drives protons through the ATP synthase, gener-

ating ATP. Additional organic compounds produced by the TCA

cycle and the ETC are also used in other cellular processes, such

as amino acid synthesis and nitrogen transportation.

A recent study showed that the MMP in phagocytes increases

initially after ingestion of apoptotic cells but decreases over time

(Park et al., 2011); however, ATP levels within the phagocyte

were largely unchanged, suggesting that proton transport and

ATP production were disengaged (Park et al., 2011). One family

of mitochondrial proteins that that can ‘‘uncouple’’ the elec-

trochemical gradient from ATP generation is the uncoupling

proteins (Ucp), located in the inner mitochondrial membrane.

Park et al. show that Ucp2 levels increase in phagocytes after

incubation with apoptotic cells and that loss of Ucp2 resulted

in an increase in mitochondrial membrane potential and nega-

tively affected phagocytic ability. Again, similar to the PPAR

and LXR requirement, Ucp2 function was specific to apoptotic

cell removal and had little effect on phagocytosis of synthetic

targets, zymosan particles, or E. coli.

Autophagy, the process by which the cells may generate

energy in nutrient-starved conditions through selective and regu-

lated digestion of internal components, has received much

attention recently (Mizushima and Komatsu, 2011). Given that

the mitochondria is a foci of energy production, the increase in

mitochondrial membrane potential within the engulfing phago-

cyte may help to generate ATP needed to facilitate plasma

membrane remodeling and to support varied phosphorylation
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events as part of the engulfment process. Components of the au-

tophagic machinery, in particular, light chain 3 (LC3), have been

found on phagosomes containing apoptotic cells (Florey et al.,

2011; Martinez et al., 2011) (Figure 1). This event, termed LC-

3-associated phagocytosis (LAP), was initially observed on

Toll-like receptor (TLR)-activated phagosomes of phagocytes

that have engulfed particles containing TLR ligands (Sanjuan

et al., 2007; Lee et al., 2010). LAP differs from classical auto-

phagy in that the hallmark autophagic double-membrane struc-

ture is absent; instead, the phagosome containing the apoptotic

cell is a single membrane and is decorated with LC-3. The LC-3-

containing phagosomes mature and degrade the internalized

cargo much more rapidly than non-LC-3-containing phago-

somes (Martinez et al., 2011; Sanjuan et al., 2007). Some auto-

phagic proteins, such as Atg7, Atg5, Beclin-1, and Vps34, but

not the Ulk1-Atg13-FIP200 preinitiation complex, are required

for LAP (Martinez et al., 2011; Florey et al., 2011). Interestingly,

Vps34 is also essential for proper phagosome maturation in

the context of corpse removal. Whether or not the consequences

of LAP- or non-LAP-associated apoptotic cell clearance resem-

bles that of autophagy, where the degraded products are used to

fuel cellular functions, remains to be determined. Nevertheless,

given the energy demands of the engulfment process as well

as the documented involvement of the mitochondria, the engulf-

ment of apoptotic cells is likely a metabolic stress on the phago-

cyte, requiring the phagocyte to utilize either itself or the ingested

apoptotic cell as energy sources for continued clearance.

Indeed, phagocytes engulfing apoptotic cells, but not synthetic

beads, have an increased rate of fatty acid oxidation (Park

et al., 2011), suggesting that this may be the case, although

whether the products are used for generating additional energy

is not clear. It will be interesting to determine whether LAP is

always a component of apoptotic cell phagocytosis and whether

LAP plays a role in mediating the digestion and conversion of the

engulfed cargo into usable energy.

The withdrawal of certain growth factors, such as insulin-like

growth factor 1 (IGF-1) or nerve growth factor, induces auto-

phagy. Interestingly, macrophages deficient in the growth factor

progranulin, as well as C. elegans mutants lacking the pro-

granulin homolog, display better engulfment capacity (Kao

et al., 2011), suggesting a connection between growth factor

withdrawal and phagocytosis. More broadly, general nutrient

sensing may be relevant in modulating engulfment of dying cells.

Recently, thioglycollate-elicited peritoneal macrophages, fol-

lowing ingestion of apoptotic cells, were shown to increase

AMP-activated protein kinase (AMPK) activity, a kinase involved

in sensing cellular ATP levels (Bae et al., 2011). Pharmacological

activation of AMPK was shown to augment phagocytic ability,

which was in this case proposed to be related to an AMPK-

mediated increase in microtubule and actin dynamics. Typically,

AMPK phosphorylation leads to changes in cellular lipid and

glucose metabolism and in mitochondrial biogenesis. Although

the cellular metabolic consequences of AMPK activation were

not explored by Bae et al. (2011), the connection between this

key energy sensor and enhanced phagocytosis is intriguing.

Given the relationship between growth factors and autophagy,

it will be of interest to determine whether and how these growth

factors affect nutrient-sensing responses and potentially impact
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apoptotic cell clearance in a tissue or in an altered nutrient state

(e.g., hypoxic tumor environment). AMPK activation was not

seen in bone marrow-derived macrophages exposed to

apoptotic cells (Park et al., 2011), raising the possibility that there

may be differential effects based on the activation status of

certain phagocytes. This idea may even be extended to the

question of whether professional phagocytes and nonprofes-

sional phagocytes respond differently in digestion of ingested

corpses.

Future Directions
The field of apoptotic cell clearance has only recently turned its

attention to the intricacies of how a phagocyte may digest and

dispose of the excess material acquired from the ingested dying

cells. Key questions center on the mechanism(s) underlying how

engulfed apoptotic cells and/or the engulfment process activate

various metabolic pathways. In the case of lipid homeostasis

involving PPARs and LXR, it is possible that lipid derivatives

from ingested apoptotic cells serve as the trigger for receptor

activation and subsequent downstream effects (Figure 1).

Degraded apoptotic cell lipids can be shuttled out of phago-

somes into the cytoplasm, where they can bind to certain cyto-

plasmic PPARs and LXR, inducing PPAR and LXR activation

and translocation to the nucleus for transcriptional activation

and/or repression activities. Alternatively, phagosomes may

dock to peroxisomes for further fatty acid processing and activa-

tion of PPARs. Use of time-lapse imaging with appropriate

resolution and dyes that mark the various compartments and

components may help to shed light on how metabolites from

the apoptotic cells are distributed for processing following

phagocytosis.

Phagocytosis of apoptotic cells appears to trigger the expres-

sion of phagocytic receptors, i.e., resembling a positive feed-

back loop (Gonzalez et al., 2009; Mukundan et al., 2009). This,

in turn, would lead to further metabolic loading within the phago-

cyte, should it choose to engulf more dying targets. Therefore,

changes in the phagocyte must encompass those associated

with the ramping up and/or modification of metabolic steps, as

well as those aimed at promoting the continued clearance of

apoptotic cells. For example, PGC1a, a mitochondrial biogen-

esis regulator, has been shown to function downstream of

PPARs, but how the number of mitochondria within a phagocyte

or the processing of metabolites by thesemitochondria might be

regulated by PPARs during engulfment is unclear. Ucp2 has

been implicated in modulating metabolism by promoting fatty

acid and glutamine metabolism and decreasing glycolysis-

derived pyruvate catabolism (Pecqueur et al., 2008). Whether

these other processes may also be partially responsible for the

effects of Ucp2 on the ability of phagocytes to continue to ingest

apoptotic cells will need further investigation.

A systematic approach to target all the metabolic changes

within a phagocyte might reveal ‘‘stress points’’ within the

system during engulfment, such as managing target numbers

(e.g., one versus multiple apoptotic cells) or target size (e.g.,

a macrophage eating another same-sized dying macrophage

in an atherosclerotic plaque versus a much smaller dying thymo-

cyte during T cell development in the thymus). Another area

worthy of more examination is how the phagocytes manage
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contents derived from apoptotic versus necrotic cells. A first-

level indication of this was seen when phagocytes incubated

with necrotic cells failed to upregulate cholesterol efflux despite

doing so with apoptotic cell uptake (Kiss et al., 2006). Because

atherosclerotic plaques have necrotic cores, the uptake of

necrotic cells may negatively affect continued clearance by

phagocytes and, in turn, potentially contribute to disease. Lastly,

understanding how phagocytes process the excess load

following engulfment might uncover new information on how

surplus metabolites could be controlled at a single-cell level

and, in turn, reveal potential new metabolic steps for therapeutic

intervention in conditions such as diabetes and obesity.
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